Almost optimal convergence of the point vortex method for vortex sheets using numerical filtering
نویسندگان
چکیده
Standard numerical methods for the Birkhoff-Rott equation for a vortex sheet are unstable due to the amplification of roundoff error by the Kelvin-Helmholtz instability. A nonlinear filtering method was used by Krasny to eliminate this spurious growth of round-off error and accurately compute the Birkhoff-Rott solution essentially up to the time it becomes singular. In this paper convergence is proved for the discretized Birkhoff-Rott equation with Krasny filtering and simulated roundoff error. The convergence is proved for a time almost up to the singularity time of the continuous solution. The proof is in an analytic function class and uses a discrete form of the abstract Cauchy-Kowalewski theorem. In order for the proof to work almost up to the singularity time, the linear and nonlinear parts of the equation, as well as the effects of Krasny filtering, are precisely estimated. The technique of proof applies directly to other ill-posed problems such as Rayleigh-Taylor unstable interfaces in incompressible, inviscid, and irrotational fluids, as well as to Saffman-Taylor unstable interfaces in Hele-Shaw cells.
منابع مشابه
A Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملNumerical Simulation of the Wake Flow Behind an Ellipse using Random Vortex Method (RESEARCH NOTE)
Direct numerical simulation of the wake flow around and behind a planar ellipse using a random vortex method is presented. Fluid is considered incompressible and the aspect ratios of ellipse and the angles of attacks are varied. This geometry can be a logical prelude to the more complex geometries, but less time dependent experimental measurements are available to validate the numerical results...
متن کاملNumerical Study on Improvement of Hydrofoil Performance using Vortex Generators (RESEARCH NOTE)
In this paper the effects of rigid triangular passive vortex generators on a hydrofoil were investigated numerically. In the first step using the Finite Volume Method the bare hydrofoil were modeled and the results of lift and drag coefficients were validated using experimental data. In the next step the hydrofoil armed with vortex generators was modeled and its effect on the hydrofoil perfo...
متن کاملRandom Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999